

Ralph Stoop, Pietro Tierno

Department of Condensed Matter Physics, University of Barcelona Institute of Nanoscience and Nanotechnology IN²UB University of Barcelona Institute of Complex System, UBICS

Jamming

Clogging

\rightarrow Obstruction of a constriction due to particle flow

flow 1.1D

A. Marin et al PRE(R), 97 021102 (2018).

K. To et al. PRL 86, 71 (2001).

"Faster is slow effect" in escape dynamics

Above $v_0=5$ m/s, people are injured and become non-moving obstacles for others

D. Helbing et al, Nature, 407, 487 (2000).

Magnetic periodic potential

Paramagnetic colloids

Traveling wave ratchet

A 4 1 4 1 4 1 4 1		
		-
		-
		-
		Î
	•	ì
		**
48.4		
		•
		•
	•	
2000 2		
		Î
		1

P. Tierno et al., JPCB 111, 13097; JPCB 111, 13479; JPCB 112, 3833; PRE, 75, 041404

Traveling wave ratchet

Model single particle (with A. V. Straube, FU Berlin)

• Overdamped Langevin eq.:

$$\zeta \dot{x}(t) = -\frac{\partial V(x,t)}{\partial x} + \sqrt{2\zeta k_B T} \xi(t)$$

Potential (approx.)

$$\frac{V(x,t)}{V_0} = -\frac{8H_0}{\pi M_s} e^{-2\pi z/\lambda} \cos\left(\frac{2\pi x}{\lambda} - \omega t\right)$$

new variable
$$y(t) = -x(t) + \Omega t / 2\pi$$

Stochastic Adler eq. $\dot{y}(t) = \left(\frac{\Omega - \Omega_c}{2\pi}\right) \sin[2\pi y(t)] + \sqrt{2\sigma} \xi(t)$

deterministic solution

$$\frac{\langle \dot{x} \rangle}{v_m} = \begin{cases} 1 & \Omega < \Omega_c \\ 1 - \sqrt{1 - (\Omega_c / \Omega)^2} & \Omega > \Omega_c \end{cases}$$
$$\Omega_c = 16H_0 e^{-2\pi z} \quad \text{critical frequency}$$

$$\zeta' = 6\pi\eta a$$
 friction coeff.
 $V_0 = (4\pi a^3/3)\chi\mu_s M_s^2$ potential strength
 $\sigma = k_B T/V_0$ noise strength
 $\Omega = (\omega\zeta\lambda^2)/(2\pi V_0)$ dimensionless freq
 $v_m = \lambda\omega/2\pi$ max. speed

$$\int_{0.6}^{1} \int_{0.6}^{1} \int_{0$$

A. V. Straube, P. Tierno EPL 103, 28001 (2013)

Model single particle

Depinning and collective dynamics states

Synchronous: locked smectic flow

....

P. Tierno PRL 109, 198304 (2012)

Depinning and collective dynamics states

Asynchronous: disordered flow

0 00 0 0 0000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0 0 000 00 00 00 00000 00000 0 0000 0000 0 00 0000 0000 0000 0000000 0 000 00 00 0000 000 00 000 0 0 0 0 0 0

P. Tierno PRL 109, 198304 (2012)

Depinning and collective dynamics states

Asynchronous: two phase-flow

0 0 000 0 0.0 0000000 000000000000 00000000000 8000 5 000 00 5 00 000 000 00. 0 00000000000000 0000000 0000000 00000 000 0,009 00000000 000 .00 000 000000000000000 0000 0.00 90000000 00% 0 0 0 000 000 00 0000 00000000 0000 0 000000 0000 000 000 000 0 0000 009 80 500 0000000000000000 00000000 0 00 0 0 90 000 00000 8,000 ° 0 0 ° 00 0 00 00000 0 0 00000 0 000 000 00000000 0 00 00 0 00 00 00 00 00 00 00 00 000 9000D 00000000000000000 0000 000000 00000 0000000 0 0 0,000 0 00000000 0000 00 0 00 .00 00000 0000060 0 00 0 00000000 9000 00000 00000 0000 00.00000 00000 0 000 000 00000 0 0 00000 00000 0a9 0 0 0 00 0 00 00 00 00 00 0000 00000 000 000 0000 0000 0000 000 00

P. Tierno PRL 109, 198304 (2012)

Depinning and dynamics states

Statistical tools

• average velocity along the driving (y-) direction

$$\left\langle v_{y}(t)\right\rangle = \left\langle \frac{1}{N} \sum_{i} \frac{dy_{i}}{dt} \right\rangle$$

• fraction of sixfold coordinated particles

$$\langle P_6 \rangle = \left\langle \frac{1}{N} \sum_i \delta(z_i - 6) \right\rangle$$

 fraction of colloids moving with the same velocity (with zero velocity)

$$\phi_s(\phi_0)$$

• transversal diffusion coefficient

$$D_x = \left\langle \left[x_i(t) - x_i(0) \right]^2 \right\rangle / 2t$$

Quenched disorder of obstacles

Deposited and attached to the magnetic substrate

$$\Phi_j = \frac{N_j \pi (d_j)^2}{4A_0} \qquad j = o \text{ (obstacles)}, m \text{ (magnetic colloids)}$$

 N_j Number of elements *j* with diameter d_j A_0 = observation area

 $\Phi_m = \frac{\pi}{2\sqrt{3}} \sim_{0.9}$

Close packing

Transport trough one aperture

Distribution P(t > t_p) of time lapse t > t_p between the particles passing through the aperture

 $t_p = 0.4 s$

Power law tail at high frequency $\ P \sim t^{-lpha}$

Clog-free system $\, \alpha \, > \, 2 \,$

low frequency ω

Strong particle vibrations on the garnet film reduce clogging

Transport trough one aperture

Collective transport

Collective transport

Collective transport

Jamming vs Clogging

Tuning interactions

21/30

Tuning interactions

Tuning interactions

Magnetic dipolar interactions

Repulsive particles

Chains

With quenched disorder

Bidirectional transport (with Arthur Straube, FU Berlin)

Bidirectional transport (with Arthur Straube, FU Berlin)

Bidirectional transport and size-selective sorting

 $\mathbf{H}^{\mathrm{ac}} \equiv [H_x \mathrm{sgn}(\cos\left(2\pi ft\right)), 0, H_z \mathrm{sgn}(\cos\left(2\pi ft\right))]$

Energy landscape explains the transport mechanism

Bidirectional transport and size-selective sorting

F. Martinez-Pedrero et al. Phys. Chem. Chem. Phys., 18, 26353 (2016)

Mixed order phase transition (with R. Alert and J. Casademunt, UB)

Mixed order phase transition (with R. Alert and J. Casademunt, UB)

29/30

Conclusions

Potential future directions (...ideas are welcome!)

- Dynamics on complex magnetic patterns (bubbles, disorder etc...)
- Transport of biological cargos
- Directional locking effects

Acknowledgements

Scientific discussions:

- Thomas Fischer
- Tom H. Johansen
- Charles Reichhardt

(Uni. Bayreuth, Germany) (Uni. Oslo, Norway) (Los alamos Nat. Lab., USA)

Funding agencies

